COVID-19 Vaccination among Pregnant People in the U.S.: A Systematic Review

Smita RAWAL Pharm D, MS, Randall L. TACKETT PhD, Rebecca H. STONE Pharm D, Henry N. YOUNG PhD

 PII:
 S2589-9333(22)00058-1

 DOI:
 https://doi.org/10.1016/j.ajogmf.2022.100616

 Reference:
 AJOGMF 100616

To appear in: American Journal of Obstetrics & Gynecology MFM

Received date:6 January 2022Revised date:2 March 2022Accepted date:7 March 2022

Please cite this article as: Smita RAWAL Pharm D, MS, Randall L. TACKETT PhD, Rebecca H. STONE Pharm D, Henry N. YOUNG PhD, COVID-19 Vaccination among Pregnant People in the U.S.: A Systematic Review, *American Journal of Obstetrics & Gynecology MFM* (2022), doi: https://doi.org/10.1016/j.ajogmf.2022.100616

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier Inc. All rights reserved.

Title: COVID-19 Vaccination among Pregnant People in the U.S.: A Systematic Review

Smita RAWAL, Pharm D, MS,^a Randall L. TACKETT, PhD,^a Rebecca H. STONE, Pharm D,^a

Henry N. YOUNG, PhD^a

a. Department of Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, 30602, USA.

Disclosure: The authors report no conflict of interest.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

PROSPERO Registration Number: CRD42021286726, Registration Date:11/01/2021

Presentation: The abstract has been submitted to the upcoming ISPOR 2022 meeting. The meeting will be held at the Gaylord National Resort and Convention Center, Washington, D.C., USA, from May 15-18.

Corresponding Author:

Smita Rawal R.C. Wilson, Rm 231, 250 W. Green Street, Athens, Georgia 30602 Office: 706-542-7230 ORCID: 0000-0001-5209-2515 Email: sr54982@uga.edu

Word count

Abstract: 349

Main text: 3,055

Condensation: Evidence supports COVID-19 vaccine's safety and effectiveness among pregnant people in the U.S.; however, vaccine acceptance is low especially among minority populations.

Short Title: COVID-19 vaccination among pregnant people in the U.S.

AJOG at a Glance:

A. Why was this study conducted?

Pregnant people are at increased risk of COVID-19 related morbidity and mortality. There is limited data regarding the safety, effectiveness, and acceptance of COVID-19 vaccination among pregnant people in the U.S.

B. What are the key findings?

Peer-reviewed studies support COVID-19 vaccines' safety and effectiveness in pregnant people, their fetuses, or neonates; however, vaccine acceptance was low especially among minorities.

C. What does this study add to what is already known?

This is the first systematic review exploring the safety, effectiveness, and acceptance of COVID-19 vaccination among pregnant people in the U.S. The safety and effectiveness of COVID-19 vaccine among pregnant people are similar to the general population. However, pregnant people exhibited vaccine hesitancy due to fear of vaccine side effects and risks to the fetus and neonate.

Keywords: COVID-19 vaccine; mRNA vaccine; pregnancy; vaccine safety; immunogenicity; vaccine effectiveness; neonatal outcomes; pregnancy outcomes; vaccine acceptance; vaccine hesitancy

buinding

Abstract

Objectives

Pregnant people are at increased risk of COVID-19 related morbidity and mortality, and vaccination presents an important strategy to prevent negative outcomes. However, pregnant people were not included in vaccine trials, and there is limited data on COVID-19 vaccines during pregnancy. The objectives of this systematic review were to identify the safety, immunogenicity, effectiveness, and acceptance of COVID-19 vaccination among pregnant people in the U.S.

Data Sources

Four databases (PubMed, Web of Science, CINAHL, and Google Scholar) were used to identify eligible studies published from January 01, 2020, through February 06, 2022.

Study Eligibility Criteria

Inclusion criteria were peer-reviewed empirical research conducted in the U.S., published in English, and addressed one of the following topics: safety, immunogenicity, effectiveness, and acceptance of COVID-19 vaccination among pregnant people.

Study Appraisal and Synthesis Methods

A narrative synthesis approach was used to synthesize findings. Critical appraisal was done using the Joanna Briggs Institute (JBI) tool.

Results

Thirty-two studies were identified. The majority of studies (n = 25) reported the use of Pfizer and Moderna COVID-19 vaccines among pregnant people; only six reported the Janssen

vaccine. Of the 32 studies, 11 examined COVID-19 vaccine safety, 10 investigated immunogenicity and effectiveness, and 11 assessed vaccine acceptance among pregnant people. Injection site pain and fatigue were the most common adverse events. One case study reported immune thrombocytopenia (ITP). COVID-19 vaccination did not increase the risk of adverse pregnancy or neonatal outcomes in comparison to unvaccinated pregnant people. After COVID-19 vaccination, pregnant people elicited a robust immune response, and vaccinations conferred protective immunity to newborns through breast milk and the placental transfer. COVID-19 vaccine acceptance was low among pregnant people in the U.S. African American race, Hispanic ethnicity, younger age, low education, prior refusal of the influenza vaccine, and lack of provider counseling were associated with low vaccine acceptance.

Conclusions

Peer-reviewed studies support COVID-19 vaccine safety and protective effects on pregnant people and their newborns. Future studies that use rigorous methodologies and include diverse populations are needed to confirm current findings. In addition, targeted and tailored strategies are needed to improve vaccine acceptance especially among minorities.

1. Introduction

Pregnant people are at an increased risk of COVID-19 related morbidity and mortality. The heightened morbidities are noted in terms of an increased risk of preterm birth^{1.2} and increased need for intensive care unit admission, invasive ventilation, and death.³⁻⁵ Vaccination presents an important strategy to prevent negative outcomes in this population. The Center for Disease Control (CDC), American College of Obstetricians and Gynecologists (ACOG), and the Society for Maternal-Fetal Medicine (SMFM) recommend that pregnant people receive COVID-19 vaccines.⁶⁻⁸

Because pregnant people were not included in the COVID-19 vaccine trials, there is limited data on vaccination safety and pregnancy outcomes compared to the general population.^{9,10} The lack of safety and efficacy data means that pregnant people are left with two options: get the vaccine, with limited safety and efficacy data, or skip the vaccine, thus leaving themselves and their fetuses vulnerable to adverse effects of COVID-19. Reviews of recent studies indicate that COVID-19 vaccination during pregnancy produces immune responses and does not cause major adverse effects and negative pregnancy or neonatal outcomes.^{11,12} While there is exponential growth in research on COVID-19 vaccination during pregnancy, many of these reviews included vaccines that are not authorized in the United States (U.S.).^{11,12} Furthermore, these reviews included information about the acceptance and uptake of COVID-19 vaccines among pregnant people. Therefore, there is an urgent need for a clear understanding of the safety, efficacy, and acceptance of COVID-19 vaccination during pregnancy so that pregnant people may be supported in making the best decision for their individual situations.

2. Objectives

The objective of this systematic review was to identify and synthesize what is known about COVID-19 vaccination amongst pregnant people in the U.S., including safety, effectiveness, acceptance, hesitancy, and uptake of COVID-19 vaccinations.

3. Methods

The review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) under CRD42021286726 at

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=286726. The Population, Intervention, Comparison, and Outcome (PICO) framework was used to organize this review.¹³ The population of interest was pregnant people in the U.S. The intervention included COVID-19 vaccinations. The outcomes were safety, immunogenicity, effectiveness, and acceptance of the COVID-19 vaccinations. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to direct the methodology of this systematic review.¹⁴

3.1. Information Sources and Search Strategy

A literature search was conducted to include studies published from January 01, 2020, through February 06, 2022. Sources included the following databases: PubMed, Web of Science, CINAHL, and Google Scholar. The key terms included in the search were "pregnant OR pregnancy OR pregnant women" AND "COVID-19 vaccine OR COVID-19 vaccination." Search results from each database were exported to Endnote. The full details of the search strategy are available in a supplementary file table (**Table S1**).

3.2. Study Selection and Data Extraction

Studies were included if they were peer-reviewed empirical studies conducted in the U.S. from January 01, 2020, through February 06, 2022, published in English, and addressed at least 1 of the following topics: (1) safety, immunogenicity, and effectiveness of COVID-19 vaccination in pregnant people, or (2) attitudes, beliefs, perceptions, acceptance, or hesitancy of pregnant people towards COVID-19 vaccination. The exclusion criteria were non-empirical and non-peerreviewed research, published as an abstract only, literature reviews, commentaries, or editorials, animal model studies, studies not examining COVID-19 vaccination in pregnant people, publication language other than English, and studies conducted outside of the U.S. Research conducted outside the U.S. was excluded because of the difference in vaccine availability, health advisories, and health care system structures. The 2-year timeframe was used because the first case of COVID-19 was reported in the U.S. in January 2020, and vaccination began in December 2020.

Initial screening of all abstracts and titles was conducted by SR and checked by another author (HNY) to determine whether to include or exclude a study based on the inclusion criteria. All full-text screening disagreements were reconciled through discussion between the authors (SR, RHS, RLT, and HNY) to achieve mutual consensus before moving to full-text review.

3.3. Assessment of Risk of Bias

Critical appraisals of included studies were conducted to evaluate the methodological quality of research; to what extent a study was designed, conducted, analyzed, interpreted, and reported to avoid systematic errors.¹⁵ Appraisals focused on methodological domains through which bias may be introduced into the results.¹⁵ All studies identified as meeting the inclusion criteria were

assessed for risk of bias by using the Joanna Briggs Institute (JBI) critical appraisal checklist for cohort studies, case-control, case report, case series, quasi-experimental (pre-post), and cross-sectional studies.¹⁶ The checklist response options included: Yes (the criteria are clearly identifiable through the report description); Unclear (the criteria are not clearly identified in the report); and No (the criteria are not identifiable). Based on the number (%) of "Yes" responses, the risk of bias was ranked as "high" (less than or equal to 49%), "moderate" (50% to 69%), and "low" (greater than or equal to 70%).¹⁶ Two independent reviewers (SR and HNY) conducted the appraisals, and both reviewers were blinded to each other's quality appraisal reviews. After independent review, the results were then collected by the first reviewer (SR), and discrepancies were discussed with a third reviewer (RLT). There were no exclusions made on the basis of a minimum threshold.

3.4. Data Synthesis

A standard data extraction form was used to collect the following information: study author(s) and year published, study title, study design, study setting, participants, COVID-19 vaccine type, outcomes, and conclusion(s). Data extraction and data synthesis were initially conducted by the first reviewer (SR) but discussed regularly with the review team (RHS, RLT, and HNY) to obtain agreement on all included studies and resolve any disagreements. A narrative synthesis approach was used to analyze studies included in this review.¹⁷ The narrative synthesis approach synthesizes findings from multiple sources and primarily uses words and text to summarize and explain findings.¹⁷ This approach is used when meta-analysis is not feasible due to high heterogeneity across studies.

4. Results

4.1. Study Selection

A total of 522 studies were obtained from PubMed, Web of Science, and CINAHL and imported into Endnote Software (Clarivate Analytics, Philadelphia, PA, U.S.). Removal of 93 duplicates yielded 429 studies. Of those, 363 studies were removed based on exclusion criteria during the title and abstract screening. The remaining 66 studies were screened for full-text review. Of these, 34 were excluded for not meeting the eligibility criteria. As a result, 32 studies were included in the review (**Figure 1**).

4.2. Study Characteristics

The characteristics of included studies are described in **Table 1.** All of the included studies used observational study designs; 15 were cohort, 10 were cross-sectional, 4 were case reports, 1 was pre-post, 1 was case-control, and 1 was case series. No randomized controlled trials were identified. Seven studies used COVID-19 vaccination registries and had sample sizes ranging from n = 2,002 to n = 135,968; the remaining 25 had sample sizes less than n = 1,030. Twenty-one studies reported the use of Pfizer and Moderna COVID-19 vaccines among pregnant people; six reported the Janssen vaccine. Only one study reported the use of COVID-19 vaccine booster in pregnant people. Five studies compared vaccinated pregnant people with vaccinated non-pregnant people, and 5 studies compared vaccinated pregnant people with unvaccinated pregnant people.

4.3. Risk of Bias of Included Studies

Critical appraisals showed that 16 studies had a low risk of bias, 14 had moderate risk, and 2 exhibited high risk. One case-control study included in this review did not match participants,

and only seven studies controlled for confounders. Three studies were purely descriptive, and two studies did not explain which statistical test was used to compare differences in observations before and after an intervention. Cross-sectional studies assessing vaccine acceptance did not use valid and reliable instruments to measure acceptance. Additional details regarding the risk of bias are summarized in Supplementary Materials (**Table S2 – S7**).

4.4. Synthesis of Results

4.4.1. COVID-19 Vaccine Safety

Eleven of the 32 (34%) studies (**Figure 2**) discussed COVID-19 vaccination-related side effects in pregnant people,¹⁸⁻²³ pregnancy outcomes (gestational hypertension, pre-eclampsia, thromboembolism, placental injuries, miscarriage, and stillbirth),^{19,24-28} and neonatal outcomes (preterm birth, congenital anomalies, small size for gestational age, neonatal ICU admission, and neonatal death).^{19,27-29}

Included studies that evaluated pregnancy and neonatal outcomes following COVID-19 vaccination did not demonstrate harmful effects with respect to pregnancy, ^{19,24,25,26,27,28} fetal development, ^{19,27,28} or neonatal outcomes. ^{19,27-29} There were no statistical differences in pregnancy outcomes such as gestational hypertension (p = 0.60), pre-eclampsia (p = 1.00), and thromboembolism incidence (p = 1.00) between vaccinated and unvaccinated pregnant people.²⁸ There were no placental injuries²⁵ and no stillbirths.^{27,28} The miscarriage rates after receiving COVID-19 vaccination ranged from 6.50% to 14.10%.^{19,24,27} These rates of miscarriage risks after a COVID-19 vaccine were similar to the 11-16% expected rate of miscarriage in the general population.^{30,31} With respect to newborns, there was no increased risk of adverse neonatal outcomes due to COVID-19 vaccination during pregnancy. No neonatal deaths were reported in the included studies.^{19,27,28} Other neonatal outcomes including preterm birth (9.40%, 5.90%),^{19,27,29} congenital anomalies (2.20%, 1.20%),^{19,27} small size for gestational age (3.20%, 12.20%),^{19,27,29} and neonatal ICU admission (0.70%, 15.30%) ^{27,28} following COVID-19 vaccination were similar to the expected rate of neonatal outcomes in the unvaccinated population.³²⁻³⁶

Side-effects reported in pregnant people were similar to the general population, and the most common side-effects included injection-site pain,¹⁸⁻²⁰ injection-site soreness,^{20,21}fevers or chills,^{18-21,23} fatigue,^{18,20} and itching.²⁰ Immune thrombocytopenia (ITP) was reported in a case study.²² Studies showed that the incidence of side-effects (injection-site pain, injection-site soreness, and fatigue) was higher in the second dose of vaccination compared with the first dose.^{18,19,21}

4.4.2. COVID-19 Vaccine Immunogenicity and Effectiveness

Ten of the 32 (31%) studies (**Figure 2**) in pregnant people examined the immunogenicity or the ability of the COVID-19 vaccine to elicit an immune response.^{21,28,37-44} These studies demonstrated that COVID-19 vaccination during pregnancy produced a robust immune response, and the antibody production was similar to those of non-pregnant people.^{21,39} These antibodies were also found in umbilical cord blood,^{21,37,40-44} which means COVID-19 vaccination during pregnancy may convey some immunity to neonates against COVID-19. In addition, the highest maternal and umbilical cord antibody levels were achieved through the completion of a full vaccination series and a booster dose.⁴⁴

Regarding the strength of the vaccine, immunity produced by the COVID-19 vaccination was found to be significantly stronger than after natural infection with the virus (p < 0.05).²¹ There was a rapid immunologic response following the first dose of the vaccine, and administration of the second dose further increased the antibody level among vaccinated

pregnant people.²¹ Similar results were observed in an age-matched cohort study where pregnant people had lower antibody levels after the first dose, but by follow-up after the second dose, immune responses were achieved comparable to that of non-pregnant people.⁴⁵ With regard to the effectiveness, COVID-19 vaccination was effective in preventing COVID-19 infection among pregnant people. A study among pregnant people showed that only 0.40% (9/2136) and 0.20% (3/1822) experienced COVID-19 infection >14 days after the first Pfizer–BioNTech and Moderna vaccination, respectively.¹⁹ Another study that compared vaccinated and unvaccinated pregnant people showed that vaccination significantly reduced the risk of future COVID-19 infection (p < 0.05).²⁸

4.4.3. COVID-19 Vaccine Acceptance

Eleven of the 32 (34%) studies (**Figure 2**) examined pregnant people's acceptance or uptake of COVID-19 vaccination.⁴⁶⁻⁵⁶ Overall, COVID-19 vaccine acceptance rates ranged between 3% and 65%. Studies conducted before the COVID-19 vaccine became available in the U.S. showed that 41%⁵⁴ and 47.80%⁴⁶ of pregnant people would be interested in receiving it. Vaccine hesitant pregnant people were concerned about side effects, sickness, allergy to the vaccine, and a perception that the vaccine is unnecessary.⁴⁶ A study reported 65% vaccine acceptance among pregnant people; this study had a sample consisting of people with higher education and greater income⁵⁵ in comparison to other studies.^{46,47,50} The vaccine acceptance rate did not improve after the COVID-19 vaccine became available in the U.S. Studies conducted after the vaccine became available showed acceptance rates of 3%,⁵¹ 16.30%,⁴⁸ 35.70%,⁵⁰44.30%,⁴⁹ and 58.30%.⁴⁷

Seven of the 11 vaccine acceptance studies examined factors that were associated with vaccine acceptance. Pregnant people's receipt of the influenza vaccine in the previous year and

communication with a medical professional about vaccines were associated with increased likelihood of COVID-19 vaccine acceptance.^{45,52,55} In contrast, pregnant people's prior refusal of the seasonal influenza vaccine,^{47,54} lack of provider counseling,⁵⁰ younger age,^{45,48} African American race,^{47,48,50,53,54} Hispanic ethnicity,^{47,48,50,54} and low education⁵⁰ were associated with refusal of vaccination. Frequently cited concerns included safety and effectiveness of COVID-19 vaccination, fears of birth defects, unknown long-term health effects on children, and risk of pregnancy loss.^{47,53,56}

5. Comment

5.1. Principal Findings

This study reviewed the available literature on COVID-19 vaccination amongst pregnant people in the U.S. Peer-reviewed observational studies support the assertion that the COVID-19 vaccine is safe during pregnancy and provides protective effects for both pregnant people and their newborns. Most of the reported side-effects such as injection site pain, soreness, fever or chills, and fatigue were not severe and similar to those reported in the general population. Immune thrombocytopenia (ITP) was reported in one case study.²² This very rare event has an incidence ranging from 1 case per 26,000 to 1 case per 127,000 doses,⁵⁷ and may be resolved by oral corticosteroids without subsequent complications.²²

The protective effects of COVID-19 vaccines in pregnant people were similar to that of the general population. Pregnant people elicited a robust immune response after vaccination with immunogenicity equivalent to non-pregnant people.²¹ The vaccines also conferred protective immunity to newborns through breast milk and placental transfer.^{21,27,40} This demonstrates that COVID-19 vaccination in pregnancy likely has a dual benefit: both the mother and newborn

receive antibodies. Supported by studies that demonstrated the efficient maternofetal transplacental transfer of anti-COVID-19 antibodies,^{58,59} Israel placed pregnant people on its vaccine priority list.⁶⁰ The U.S. has not formally prioritized COVID-19 vaccination for pregnant people, which may ultimately contribute to poorer maternal and fetal outcomes in the U.S. Even though COVID-19 vaccination is beneficial during both pregnancy and lactation, it may be most beneficial during pregnancy because higher levels of antibodies were found in early milk compared to later milk.³⁹

Although randomized controlled clinical trials involving pregnant people are lacking, data from all observational studies indicate that pregnant people tole ate COVID-19 vaccines well. Major adverse events have not been reported for mother and fetus or neonate, and the scientific understanding of the vaccine's mechanism of action does not raise theoretical safety concerns.^{19,24,26,48} Studies of COVID-19 vaccines authorized in the U.S. show that the vaccine virus does not cross the placenta.^{37,59} Only protective antibodies produced in the vaccinated mother's body are transferred to the neonates through breastmilk or placental transfer.^{21,42,40} COVID-19 vaccine safety and effectiveness are important factors in achieving population immunity; however, wider acceptance of vaccines is crucial for achieving sufficient immunization coverage.

Current research indicates a low acceptance of COVID-19 vaccination among pregnant people in the U.S. Specifically, Black and Latinx people have shown less trust in the vaccine and cited fear of side effects and risks to the fetus or neonate.^{46,47,53,56} The lack of trust in the COVID-19 vaccine and vaccine refusal may stem from long-standing medical distrust among various communities due to historical misdeeds (e.g., Tuskegee syphilis study).⁶¹ Contemporary healthcare encounters may also cultivate distrust of healthcare professionals and researchers. A

2020 Kaiser Family Foundation survey of 1,700 U.S. adults showed that 45% of Black patients reported at least 1 of 6 negative experiences with a health care professional, and 36% believed they would have received better care if they were of different race/ethnicity.⁶²

Low acceptance of vaccines could be addressed by forming partnerships between healthcare and trusted community-based organizations (CBOs). Collaborations with trusted communities can work towards developing and delivering accurate, consistent, and transparent messaging to effectively promote vaccine acceptance and other positive health behaviors.⁶³⁻⁶⁵ Virtual town hall meetings hosted by community leaders and local healthcare providers can engage communities in discussions regarding COVID-19 vaccines.⁶⁶ Targeted messages conveyed through multiple languages that focus on vaccine safety, efficacy, and vaccine's ability to confer protective immunity to neonates may alleviate fear and increase the likelihood of vaccination.⁶⁷ Healthcare providers (HCPs) discussing risk and benefit information with pregnant people during routine visits may be another strategy to alleviate fear and reduce vaccine hesitancy. Prior research has shown that vaccine communication comprising education and recommendations from HCPs bolstered Tdap and influenza vaccine acceptance among pregnant people.⁶⁸⁻⁷⁰ Given what is known about COVID-19 vaccine safety and effectiveness, HCPs can use available data to educate and empower pregnant people to make informed decisions. In addition, HCPs who have received the COVID-19 vaccine when they were pregnant may be positioned to share their credible vaccination experiences. A national recommendation endorsing COVID-19 vaccine administration during pregnancy, with additional support and reinforcement by their HCP, may improve vaccine uptake by pregnant people.

5.2. Strengths and Limitations

To the best of our knowledge, this is the first systematic review exploring COVID-19 vaccination among pregnant people in the U.S. This comprehensive review included all peerreviewed empirical studies published so far on this topic. However, certain limitations of the present study should be acknowledged. First, all studies included in this review were observational, non-randomized, and lacked long-term safety and effectiveness data. Thus, the evidence presented in this review may be limited due to prior study designs. Second, studies included in this review were not excluded based on critical appraisals of the research (i.e., risk of bias assessments). It was considered important to include all studies irrespective of the risk of bias to obtain a more comprehensive picture of relevant research pertaining to the aim of this review. However, it is acknowledged that the lack of a minimum threshold may hold some limitations for the findings. Lastly, the evidence presented in this review may be limited for the Janssen COVID-19 vaccine, since only six studies reported the use of the Janssen COVID-19 vaccine among pregnant people.

5.3. Conclusions and Implications

Peer-reviewed studies support COVID-19 vaccine safety and protective effects on pregnant people and their newborns. Future studies that use rigorous methodologies and include diverse populations (e.g., minorities and rural residents) are needed to confirm current findings and examine the effectiveness of COVID-19 vaccines and boosters on emerging SARS-CoV-2 variants during pregnancy. In addition, targeted and tailored strategies may help improve vaccine acceptance among pregnant people, especially vulnerable populations.

Author contributions

Smita Rawal: Conceptualization, Methodology, Investigation, Resources, Writing - original draft, Writing - review & editing.

Rebecca H. Stone: Conceptualization, Methodology, Resources, Writing - review & editing.

Randall L. Tackett: Conceptualization, Methodology, Resources, Writing - review & editing, Supervision, Project administration.

Henry N. Young: Conceptualization, Methodology, Resources, Writing - review & editing, Supervision, Project administration.

r Proposition

References

- 1. Woodworth KR, Olsen EOM, Neelam V, et al. Birth and infant outcomes following laboratoryconfirmed SARS-CoV-2 infection in pregnancy—SET-NET, 16 jurisdictions, March 29–October 14, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(44):1635.
- Khalil A, Von Dadelszen P, Draycott T, Ugwumadu A, O'Brien P, Magee L. Change in the incidence of stillbirth and preterm delivery during the COVID-19 pandemic. JAMA. 2020;324(7):705-706.
- 3. Zambrano LD, Ellington S, Strid P, et al. Update: characteristics of symptomatic women of reproductive age with laboratory-confirmed SARS-CoV-2 infection by pregnancy status—United States, January 22–October 3, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(44):1641.
- 4. Lokken EM, Huebner EM, Taylor GG, et al. Disease severity, pregnancy outcomes and maternal deaths among pregnant patients with SARS-CoV-2 infection in Washington State. *Am J Obstet Gynecol.* 2021.
- 5. Crovetto F, Crispi F, Llurba E, et al. Impact of SARS-CoV-2 Infection on Pregnancy Outcomes: A Population-Based Study. *Clin Infect Dis: an Official Publication of the Infectious Diseases Society of America*. 2021.
- 6. ACOG and SMFM Recommend COVID-19 Vaccination for Pregnant Individuals. American College of Obstetricians and Gynecologists (ACOG). https://www.acog.org/news/newsreleases/2021/07/acog-smfm-recommend-covid-19-vaccination-for-pregnant-individuals. Published 2021. Updated Jul 30, 2021. Accessed November 30, 2021.
- COVID-19 vaccines while pregnant or breastfeeding. Centers for Disease Control and Prevention https://www.cdc.gov/coronavirus/2019-r cov/vaccines/recommendations/pregnancy.html. Published 2021. Accessed November 30, 2021.
- 8. Rasmussen SA, Jamieson DJ. Pregnancy, postpartum care, and COVID-19 vaccination in 2021. *JAMA*. 2021;325(11):1099-1100.
- 9. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. *N Engl J Med.* 2020.
- 10. Pogue K, Jensen JL, Stancil CK, et al. Influences on attitudes regarding potential COVID-19 vaccination in the United States. *Vaccines*. 2020;8(4):582.
- 11. Fu W, Sivajohan B, McClymont E, et al. Systematic review of the safety, immunogenicity, and effectiveness of COVID-19 vaccines in pregnant and lactating individuals and their infants. *Int J Gynaecol Obstet.* 2021.
- 12. Falsaperla R, Leone G, Familiari M, Ruggieri M. COVID-19 vaccination in pregnant and lactating women: a systematic review. *Expert Rev Vaccines*. 2021:1-10.
- 13. Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. *Acp j club.* 1995;123(3):A12-A13.
- 14. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and metaanalysis protocols (PRISMA-P) 2015 statement. *Syst Rev.* 2015;4(1):1-9.
- 15. Higgins JP, Savović J, Page MJ, Elbers RG, Sterne JA. Assessing risk of bias in a randomized trial. *Cochrane Database Syst Rev.* 2019:205-228.
- Checklist for Systematic Reviews and Research syntheses, Critical Appraisal Tools. Joanna Briggs Institute, Adelaide, Australia. https://jbi.global/sites/default/files/2019-05/JBI_Critical_Appraisal-Checklist_for_Systematic_Reviews2017_0.pdf. Published 2017. Accessed December 1, 2021.
- 17. Popay J, Roberts H, Sowden A, et al. Guidance on the conduct of narrative synthesis in systematic reviews. *A product from the ESRC methods programme Version.* 2006;1:b92.

- Kachikis A, Englund JA, Singleton M, Covelli I, Drake AL, Eckert LO. Short-term Reactions Among Pregnant and Lactating Individuals in the First Wave of the COVID-19 Vaccine Rollout. JAMA Netw Open. 2021;4(8):e2121310.
- 19. Shimabukuro TT, Kim SY, Myers TR, et al. Preliminary Findings of mRNA Covid-19 Vaccine Safety in Pregnant Persons. *N Engl J Med.* 2021;384(24):2273-2282.
- 20. Kadali RAK, Janagama R, Peruru SR, et al. Adverse effects of COVID-19 messenger RNA vaccines among pregnant women: a cross-sectional study on healthcare workers with detailed self-reported symptoms. *Am J Obstet Gynecol.* 2021.
- 21. Gray KJ, Bordt EA, Atyeo C, et al. Coronavirus disease 2019 vaccine response in pregnant and lactating women: a cohort study. *Am J Obstet Gynecol.* 2021.
- 22. Bennett C, Chambers LM, Son J, Goje O. Newly diagnosed immune thrombocytopenia in a pregnant patient after coronavirus disease 2019 vaccination. *J Obstet Gynaecol Res.* 2021.
- 23. Nakahara A, Biggio J, Elmayan A, Williams FB. Safety-related outcomes of novel mRNA COVID-19 vaccines in pregnancy. *American journal of perinatology*. 2022(AAM).
- 24. Zauche LH, Wallace B, Smoots AN, et al. Receipt of mRNA Covid-19 Vaccines and Risk of Spontaneous Abortion. *N Engl J Med.* 2021.
- 25. Shanes ED, Otero S, Mithal LB, Mupanomunda CA, Miller ES, Goldstein JA. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccination in Pregnancy: Measures of Immunity and Placental Histopathology. *Obstet Gynecol.* 2021;138(2):281-283.
- 26. Kharbanda EO, Haapala J, DeSilva M, et al. Spontaneous Abortion Following COVID-19 Vaccination During Pregnancy. *JAMA*. 2021.
- Trostle ME, Limaye MA, Avtushka V, Lighter JL, Penfield CA, Roman AS. COVID-19 vaccination in pregnancy: early experience from a single institution. *Am J Obstet Gynecol MFM*. 2021;3(6):100464.
- 28. Theiler RN, Wick M, Mehta R, Weaver AL, Virk A, Swift M. Pregnancy and birth outcomes after SARS-CoV-2 vaccination in pregnancy. *Am J Obstet Gynecol MFM*. 2021;3(6):100467-100467.
- 29. Lipkind HS, Vazquez-Benitez G, DeSilva M, et al. Receipt of COVID-19 Vaccine During Pregnancy and Preterm or Small-for-Gestational-Age at Birth—Eight Integrated Health Care Organizations, United States, December 15, 2020–July 22, 2021. *Morbidity and Mortality Weekly Report*. 2022;71(1):26.
- Mukherjee S, Velez Edwards DR, Baird DD, Savitz DA, Hartmann KE. Risk of miscarriage among black women and white women in a US Prospective Cohort Study. *Am J Epidemiol.* 2013;177(11):1271-1278.
- 31. Magnus MC, Wilcox AJ, Morken N-H, Weinberg CR, Håberg SE. Role of maternal age and pregnancy history in risk of miscarriage: prospective register based study. *bmj.* 2019;364.
- 32. Ferré C, Callaghan W, Olson C, Sharma A, Barfield W. Effects of maternal age and age-specific preterm birth rates on overall preterm birth rates—United States, 2007 and 2014. *Morbidity and Mortality Weekly Report*. 2016;65(43):1181-1184.
- Percentage of births born preterm by state. Centers for Disease Control and Prevention (CDC) National Center for Health Statistics. Web site. https://www.cdc.gov/nchs/pressroom/sosmap/preterm_births/preterm.htm. Published 2018. Accessed December 1, 2021.
- 34. Boghossian NS, Geraci M, Edwards EM, Horbar JD. Morbidity and mortality in small for gestational age infants at 22 to 29 weeks' gestation. *Pediatrics*. 2018;141(2).
- 35. Francis A, Hugh O, Gardosi J. Customized vs INTERGROWTH-21st standards for the assessment of birthweight and stillbirth risk at term. *Am J Obstet Gynecol.* 2018;218(2):S692-S699.
- 36. Update on overall prevalence of major birth defects--Atlanta, Georgia, 1978-2005. *MMWR Morb Mortal Wkly Rep.* 2008;57(1):1-5.

- Mithal LB, Otero S, Shanes ED, Goldstein JA, Miller ES. Cord blood antibodies following maternal coronavirus disease 2019 vaccination during pregnancy. *Am J Obstet Gynecol.* 2021;225(2):192-194.
- 38. Gill L, Jones CW. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibodies in Neonatal Cord Blood After Vaccination in Pregnancy. *Obstet Gynecol.* 2021;137(5):894-896.
- 39. Collier AY, McMahan K, Yu J, et al. Immunogenicity of COVID-19 mRNA Vaccines in Pregnant and Lactating Women. *JAMA*. 2021;325(23):2370-2380.
- 40. Paul G, Chad R. Newborn antibodies to SARS-CoV-2 detected in cord blood after maternal vaccination–a case report. *BMC Pediatr.* 2021;21(1):1-2.
- Prabhu M, Murphy EA, Sukhu AC, et al. Antibody Response to Coronavirus Disease 2019 (COVID-19) Messenger RNA Vaccination in Pregnant Women and Transplacental Passage Into Cord Blood. *Obstet Gynecol.* 2021:10.1097.
- 42. Trostle ME, Aguero-Rosenfeld ME, Roman AS, Lighter JL. High antibody levels in cord blood from pregnant women vaccinated against COVID-19. *American journal of obstetrics & gynecology MFM.* 2021.
- 43. Mangat C, Milosavljevic N. BNT162b2 Vaccination during Pregnancy Protects Both the Mother and Infant: Anti-SARS-CoV-2 S Antibodies Persistently Positive in an Infant at 6 Months of Age. *Case Reports in Pediatrics.* 2021;2021.
- 44. Yang YJ, Murphy EA, Singh S, et al. Association of Gestational Age at Coronavirus Disease 2019 (COVID-19) Vaccination, History of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection, and a Vaccine Booster Dose With Maternal and Umbilical Cord Antibody Levels at Delivery. *Obstetrics & Gynecology*. 2021:10.1097.
- 45. Atyeo C, DeRiso EA, Davis C, et al. COVID-19 mRNA vaccines drive differential antibody Fcfunctional profiles in pregnant, lactating, and nonpregnant women. *Sci Transl Med.* 2021;13(617):eabi8631.
- 46. Ahlers-Schmidt CR, Hervey AM, Neil T, Kuhlmann S, Kuhlmann Z. Concerns of women regarding pregnancy and childbirth during the COVID-19 pandemic. *Patient Educ Couns*. 2020;103(12):2578-2582.
- 47. Levy AT, Singh S, Riley LE, Prabhu M. Acceptance of COVID-19 vaccination in pregnancy: a survey study. *Am J Obstet Gynecol MFM*. 2021;3(5):100399.
- 48. Razzaghi H, Meghani M, Pingali C, et al. COVID-19 Vaccination Coverage Among Pregnant Women During Pregnancy - Eight Integrated Health Care Organizations, United States, December 14, 2020-May 8, 2021. *MMWR Morb Mortal Wkly Rep.* 2021;70(24):895-899.
- Sutton D, D'Alton M, Zhang Y, et al. COVID-19 vaccine acceptance among pregnant, breastfeeding, and nonpregnant reproductive-aged women. *Am J Obstet Gynecol MFM*. 2021;3(5):100403.
- 50. Huddleston HG, Jaswa EG, Lindquist KJ, et al. COVID-19 Vaccination Patterns and Attitudes Among American Pregnant Individuals. *Am J Obstet Gynecol MFM*. 2021.
- 51. Hirshberg JS, Huysman BC, Oakes MC, et al. Offering onsite COVID-19 vaccination to high-risk obstetrical patients: initial findings. *Am J Obstet Gynecol MFM*. 2021;3(6).
- 52. Desai P, Kaur G, Fanglong D, Rodriguez MH. COVID-19 Vaccine Acceptance In Pregnancy. *Neonatology Today.* 2021:11-15.
- 53. Townsel C, Moniz MH, Wagner AL, et al. COVID-19 vaccine hesitancy among reproductive-aged female tier 1A healthcare workers in a United States Medical Center. *J Perinatol.* 2021;41(10):2549-2551.
- 54. Battarbee AN, Stockwell MS, Varner M, et al. Attitudes toward COVID-19 illness and COVID-19 vaccination among pregnant women: a cross-sectional multicenter study during August– December 2020. *American journal of perinatology*. 2022;39(01):075-083.

- 55. Sznajder KK, Kjerulff KH, Wang M, Hwang W, Ramirez SI, Gandhi CK. Covid-19 vaccine acceptance and associated factors among pregnant women in Pennsylvania 2020. *Preventive Medicine Reports*. 2022:101713.
- 56. Wang T, Krishnamurti T, Bernard M, Lopa S, Quinn B, Simhan H. Perceptions and knowledge of COVID-19 vaccine safety and efficacy among vaccinated and non-vaccinated obstetric healthcare workers. *Behavioral Medicine*. 2021:1-13.
- 57. Pai M, Chan B, Stall N, et al. Vaccine-induced immune thrombotic thrombocytopenia (VITT) following adenovirus vector COVID-19 vaccination. *Science Briefs of the Ontario COVID-19 Science Advisory Table*. 2021;2(17):1-7.
- 58. Rottenstreich A, Zarbiv G, Oiknine-Djian E, Zigron R, Wolf DG, Porat S. Efficient maternofetal transplacental transfer of anti- SARS-CoV-2 spike antibodies after antenatal SARS-CoV-2 BNT162b2 mRNA vaccination. *Clin Infect Dis.* 2021.
- 59. Beharier O, Mayo RP, Raz T, et al. Efficient maternal to neonatal transfer of antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine. *J Clin Investig.* 2021.
- 60. Vaccinating Women who are Planning a Pregnancy, Pregnant or Breastfeeding with the COVID-19 Vaccine – Clarification [press release]. Ministry of Health, January 28, 2021 2021.
- 61. Shavers VL, Lynch CF, Burmeister LF. Knowledge of the Tuskegee study and its impact on the willingness to participate in medical research studies. *Journal of the National Medical Association.* 2000;92(12):563.
- Hamel L, Lopes L, Muñana C, Artiga S, Brodie M. The Undefeated Survey on Race and Health. Kaiser Family Foundation. San Francisco, CA: Kaiser Family Foundation Web site. https://www.kff.org/report-section/kff-the-undefeated-survey-on-race-and-health-mainfindings/. Published 2020. Accessed February 06, 2022.
- 63. Quinn SC, Andrasik MP. Addressing vaccine hesitancy in BIPOC communities—toward trustworthiness, partnership, and reciprocity. *New England Journal of Medicine*. 2021;385(2):97-100.
- 64. Cowell AJ, Farrelly MC, Chou R, Vallone DM. Assessing the impact of the national 'truth'antismoking campaign on beliefs, attitudes, and intent to smoke by race/ethnicity. *Ethnicity & health.* 2009;14(1):75-91.
- 65. Carson SL, Gonzalez C, Lopez S, et al. Reflections on the importance of community-partnered research strategies for health equity in the era of COVID-19. *Journal of health care for the poor and underserved*. 2020;31(4):1515.
- 66. Wagner EF, Langwerden RJ, Morris SL, et al. Virtual town halls addressing vaccine hesitancy among racial and ethnic minorities: Preliminary findings. *Journal of the American Pharmacists Association*. 2022;62(1):317-325.
- 67. Feifer RA, Bethea L, White EM. Racial disparities in COVID-19 vaccine acceptance: Building trust to protect nursing home staff and residents. *Journal of the American Medical Directors Association.* 2021;22(9):1853-1855. e1851.
- 68. Strassberg ER, Power M, Schulkin J, et al. Patient attitudes toward influenza and tetanus, diphtheria and acellular pertussis vaccination in pregnancy. *Vaccine*. 2018;36(30):4548-4554.
- 69. Yuen CYS, Tarrant M. Determinants of uptake of influenza vaccination among pregnant women– a systematic review. *Vaccine*. 2014;32(36):4602-4613.
- 70. Myers KL. Predictors of maternal vaccination in the United States: An integrative review of the literature. *Vaccine*. 2016;34(34):3942-3949.

23

Table 1. Characteristics of Included Studies (n = 32)

COVID-19 Va	accine Safety				6		
Author(s),	Study Title	Study	Study	Participants	COVID-19	Outcomes	Conclusions
Year		Design	Setting	(n)	Vaccine Types,		
					% received		
Bennett et al.,	Newly diagnosed	Case	Hospital in	Vaccinated	Moderna mRNA-	Vaccine side effects:	COVID-19
2021	immune	report	Ohio	pregnant woman	1273	Immune thrombocytopenia	vaccination
	thrombocytopenia			at the first	Patient had	(ITP) occurred 13 days after	benefits outweigh
	in a pregnant			trimester of	received first	COVID-19 vaccination. ITP	the risk of infection
	patient after			pregnancy	dose only.	was resolved by oral	in pregnancy and
	coronavirus		0	(n = 1)		corticosteroids and patient	that pregnant
	disease 2019					was discharged home on the	women should be
	vaccination					fourth day of hospitalization	included in clinical
		0				with no complications.	trials.

Kachikis et	Short-term	Cohort	Online	Pregnant (n =	Pfizer-BioNTech	Vaccine side effects:	COVID-19
al., 2021	Reactions Among	study	Registry in	7,809),	BNT162b2:	Women who received	vaccines were
	Pregnant and		the US	Lactating (n =	61.9%	vaccine experienced pain at	well-tolerated
	Lactating			6,815) and	Moderna mRNA-	injection site (91.4%) and	among pregnant
	Individuals in the			neither pregnant	1273: 37.8%	fatigue (31.3%).	women.
	First Wave of the			nor lactating	Janssen JNJ-	Pregnancy outcomes: 0.7	
	COVID-19			women but	78436735:	% of pregnant women	
	Vaccine Rollout			planning	0.23%	reported miscarriages at the	
				pregnancy (n =		time of their second vaccine	
				2,901)	85.9% of all	dose.	
					participants		
			~0		received both		
					doses.		
						·	
		\mathbf{O}					

Kadali et al.,	Adverse effects of	Cross-	Online	Vaccinated	Pfizer-BioNTech	Vaccine side effects: The	COVID-19
2021	COVID-19	sectional	survey of US	pregnant	BNT162b2:	vaccine side effects	vaccines side
	messenger RNA	survey	adults	healthcare	52.6%	experienced by pregnant	effects and safety
	vaccines among			workers	Moderna mRNA-	HCWs were minor and	were comparable
	pregnant women:			(HCWs) (n =	1273 : 47.4%	included sore arm (93%) and	among pregnant
	a cross-sectional			38) and non-	About 81.58%	itching (5%). The side-	and non-pregnant
	study on			pregnant HCWs	(31 of 38) of the	effects appeared to be	HCWs.
	healthcare			(n = 991)	pregnant HCWs	similar (with no significant	
	workers with				received both	statistical difference) when	
	detailed self-				doses of the	compared with non-pregnant	
	reported				mRNA vaccine.	HCWs.	
	symptoms		0				
		\mathbf{O}					

Kharbanda et	Spontaneous	Case-	8 health	Pregnant	Pfizer-BioNTech	Pregnancy outcomes:	Among women
al., 2021	Abortion	control	systems (5	women (n =	BNT162b2 :	13,160 miscarriages and	with miscarriages,
	Following	surveillan	Kaiser	105,446)	received 1 or	92,286 ongoing pregnancies	the odds of
	COVID-19	ce of	Permanente		more doses	were identified.	COVID-19 vaccine
	Vaccination	Vaccine	health		(7.80%)	Spontaneous abortions did	exposure were not
	During Pregnancy	Safety	systems;		Moderna mRNA-	not have an increased odds	increased in the
		Datalink	Denver		1273 : received 1	of exposure to a COVID-19	prior 28 days
			Health;	.0	or more doses	vaccination in the prior 28	compared with
			HealthPartne		(6.0%)	days compared with ongoing	women with
			rs; and		Janssen JNJ-	pregnancies (aOR, 1.02;	ongoing
			Marshfield		78436735 :	95% CI, 0.96-1.08). Results	pregnancies.
			Clinic in		0.50%	were consistent for mRNA-	
			Washington,			1273 and BNT162b2 and by	
			California,			gestational age group.	
		N.	Colorado,				
		M	Wisconsin				

Lipkind et	Receipt of	Cohort	8 health	Unvaccinated	Pfizer-BioNTech	Pregnancy outcomes:	COVID-19
al., 2022	COVID-19	study	systems (5	pregnant women	BNT162b2 :	The prevalence of preterm	vaccination during
	Vaccine During		Kaiser	(n	received 1 or	birth and small-for-	pregnancy is not
	Pregnancy and		Permanente	= 36,015) and	more doses	gestational-age (SGA) at	associated with
	Preterm or Small-		health	vaccinated	(54.40 %)	birth were 6.6 and 8.2 per	negative neonatal
	for-Gestational-		systems;	pregnant women	Moderna mRNA-	100 live births, respectively.	outcomes, when
	Age at Birth —		Denver	(n = 10,064)	1273 : received 1	COVID-19 vaccination	compared with
	Eight Integrated		Health;	.0	or more doses	during pregnancy was not	unvaccinated
	Health Care		HealthPartne		(41.40%)	significantly associated with	pregnant women.
	Organizations,		rs; and		Janssen JNJ-	increased risk for preterm	
	United States,		Marshfield		78436735 :	birth overall ($aHR = 0.91$;	
	December 15,		Clinic in		4.20%	95% CI = 0.82–1.01; p =	
	2020–July 22,		Washington,			0.06) or SGA at birth (aHR	
	2021		California,			= 0.95; 95% CI $= 0.87-1.03;$	
		hV.	Colorado,			p = 0.24).	
			Wisconsin				

Nakahara et	Safety-related	Cohort	Ochsner	Unvaccinated	mRNA vaccine	Pregnant individuals were	Side effects
al., 2022	outcomes of novel	study	health	women (n	(Type not stated)	more likely to report fever	following the
	mRNA COVID-		system in	= 166) and	X	(4.80% vs 0.60%, p = 0.04)	COVID-19
	19 vaccines in		Louisiana	vaccinated		and gastrointestinal	vaccination
	pregnancy		and	pregnant women		symptoms (4.80% vs 0%, p	administration
			Mississippi	(n = 83)		= 0.01). Frequency of	were similar
					2	complaint following vaccine	between pregnant
				.0		administration was not	and non-pregnant
						different between pregnant	individuals.
						and non-pregnant persons	
						(18.10% vs 16.90%, P =	
			0			0.20).	
	2						

Shanes et al.,	Severe Acute	Cohort	Hospital in	Unvaccinated	mRNA vaccine	Pregnancy outcomes:	There was no
2021	Respiratory	study	Chicago	pregnant (n =	(Type not stated)	Placental examination in	observed adverse
	Syndrome			116) and	X	women with vaccination	pregnancy
	Coronavirus 2			vaccinated		showed no increased	outcomes and
	(SARS-CoV-2)			pregnant women		incidence of placental	placental injuries
	Vaccination in			(n = 84)		injuries compared with the	in vaccinated
	Pregnancy				R	control group.	pregnant women.
				0			
Shimabukuro	Preliminary	Cohort	COVID-19	Vaccinated	Pfizer-BioNTech	Vaccine side effects:	Preliminary
et al., 2021	Findings of	study	vaccine	pregnant women	BNT162b2:	Injection-site pain reported.	findings did not
	mRNA Covid-19		pregnancy	(n = 35,691)	53.9%	Pregnancy outcomes: No	show any major
	Vaccine Safety in		registry in		Moderna mRNA-	neonatal deaths were	safety issues
	Pregnant Persons		the US		1273: 46.10%	reported.12.60% had a	among pregnant,
						spontaneous abortion, 9.40%	mRNA vaccine
						a preterm birth, and 3.20% a	recipients.
						baby small for gestational	
						age (SGA).	

Theiler et al.,	Pregnancy and	Cohort	Mayo Clinic	Unvaccinated	Pfizer-BioNTech	Pregnancy outcomes:	Compared to
2021	birth outcomes	study	Health	pregnant women	BNT162b2:	Thromboembolic events,	unvaccinated
	after SARS-CoV-		System in	(n = 1,862) and	90.70%	gestational hypertension and	pregnant women,
	2 vaccination in		Minnesota	vaccinated	Moderna mRNA-	preeclampsia risk was	vaccinated
	pregnancy		and	pregnant women	1273: 8.57%	similar between vaccinated	pregnant women
			Wisconsin	(n = 140)	Janssen JNJ-	and unvaccinated pregnant	were less likely to
					78436735:	women.	experience
				.0	0.71%.	Neonatal outcomes:	COVID-19
					73.60% of	Preterm birth, neonatal	infection. And
					pregnant women	birthweight in pregnant	vaccination during
					completed both	vaccinated people were	pregnancy was not
			0		doses of	similar when compared with	associated with
					vaccination	unvaccinated pregnant	increased
					before delivery.	women.	pregnancy or
							delivery
							complications.

Trostle et al.,	COVID-19	Cohort	Academic	Vaccinated	mRNA vaccine:	Pregnancy outcomes: 9	The rate of
2021	vaccination in	study	medical	pregnant women	100%	women had spontaneous	spontaneous
	pregnancy: early		center in	(n = 424)	X	abortions, 3 terminated their	abortion in this
	experience from a		New York		Of those, 82.10%	pregnancies, and 327 had	study was within
	single institution				had received both	ongoing pregnancies. There	the expected rate of
					doses and	were no stillbirths.	10%, and preterm
					17.90% had	Neonatal outcomes: The	birth rate of 5.9%
				.0	received only 1	rate of preterm birth was	was below the
					dose.	5.90%. 15.30% of neonates	national average of
						required admission to the	9.50%, and 12.20%
						neonatal intensive care unit	rate of SGA
			~0			(NICU). 12.20% were small	neonates was near
		5				for gestational age (SGA)	the expected value.
						per the WHO standards.	
		0					

Zauche et al.,	Receipt of mRNA	Cohort	COVID-19	Vaccinated	Pfizer-BioNTech	Pregnancy outcomes: The	The risk of
2021	Covid-19	study	vaccine	pregnant women	BNT162b2 :	cumulative risk of	spontaneous
	Vaccines and Risk		pregnancy	(n = 2,456)	52.70%	spontaneous abortion from 6	abortion after
	of Spontaneous		registry in the		Moderna mRNA-	to less than 20 weeks of	mRNA COVID-19
	Abortion		US		1273: 47.30%	gestation was 14.10% (95%	vaccination is
						CI,12.10 to 16.10) in the	consistent with the
					R	primary analysis and 12.80%	expected risk of
				.0		(95% CI, 10.80 to 14.80) in	spontaneous
						an analysis using direct	abortion. The
						maternal age-	mRNA COVID-19
						standardization to the	vaccination is safe
			0			reference population.	in pregnancy.
	S	out		1	1	1	<u> </u>

COVID-19 Vaccine Immunogenicity and Effectiveness										
Author(s),	Study Title	Study	Study	Participants (n)	COVID-19	Outcomes	Conclusions			
Year		Design	Setting		Vaccine Type,					
					% received					
Atyeo et al.,	COVID-19	Cohort	Tertiary care	Vaccinated,	Both doses of	Vaccine-specific antibody	There is a need to			
2021	mRNA vaccines	study	centers in the	pregnant (n =	Pfizer-BioNTech	levels were lower compared	complete both			
	drive differential		US	84), lactating (n	BNT162b2 or	to non-pregnant women after	doses of COVID-			
	antibody Fc-			= 31), and non-	Moderna mRNA-	the first vaccine dose, which	19 vaccine in			
	functional profiles			pregnant (n =	1273	normalized after the second	pregnant			
	in pregnant,			16) age-matched		dose.	population to			
	lactating, and non-		~0	controls			ensure full			
	pregnant women						immunity is			
							attained.			

Collier et al.,	Immunogenicity	Cohort	Hospital in	Pregnant (n =	Both doses of	Pregnant, lactating, and non-	Pregnant and non-
2021	of COVID-19	study	Massachusett	30), lactating (n	Pfizer-BioNTech	pregnant women who were	pregnant women
	mRNA Vaccines		s	= 16), and	BNT162b2 or	vaccinated developed	who were
	in Pregnant and			neither pregnant	Moderna mRNA-	antibody responses and T-	vaccinated
	Lactating Women			nor lactating	1273	cell responses against	developed antibody
				women (n = 57)		COVID-19 infection.	responses and T-
				who were	R		cell responses
				vaccinated or			against SARS-
				had had			CoV-2 variants.
				confirmed			
				COVID-19			
			0	infection in the			
				past			
		J.					

Gill and	Severe Acute	Case	Hospital in	Pregnant	Both doses of	Uncomplicated spontaneous	This is the first
Jones, 2021	Respiratory	study	Minnesota	woman	Pfizer-BioNTech	vaginal delivery of a female	case report
	Syndrome			vaccinated in	BNT162b2	neonate occurred at term.	documenting
	Coronavirus 2			the third	mRNA vaccine	The patient's blood and	transplacental
	(SARS-CoV-2)			trimester of		neonatal cord blood were	transfer of
	Antibodies in			pregnancy)`	evaluated for SARS-CoV-2-	neutralizing SARS-
	Neonatal Cord			(n = 1)		specific antibodies. Both the	CoV-2 antibodies
	Blood After					patient and the neonate were	after vaccination in
	Vaccination in					positive for antibodies.	the third trimester
	Pregnancy					There was transplacental	of pregnancy.
						transfer of neutralizing	
			\sim			SARS-CoV-2 antibodies.	

Gray et al.,	Coronavirus	Cohort	Academic	Vaccinated	Pfizer-	Vaccine created robust	COVID-19 mRNA
2021	disease 2019	study	medical	pregnant (n = 84)	BioNTech	humoral immunity in	vaccines generated
	vaccine response		centers in	, lactating (n =	BNT162b2:	pregnant and lactating	immunity in
	in pregnant		Massachusett	31), and non-	49%	women, with	pregnant and
	and lactating		s	pregnant women	Moderna	immunogenicity similar to	lactating women,
	women: a cohort			(n = 16)	mRNA-1273:	that of non-pregnant women	with
	study				51%	(pregnant, median, 5.59;	immunogenicity
				.0		IQR, 4.68-5.89; lactating,	similar to that
						median, 5.74; IQR, 5.06-	observed in non-
						6.22; non-pregnant, median,	pregnant women.
						5.62; IQR, 4.77-5.98, p =	Immune transfer to
			~0.			0.24). Also, vaccine-	neonates occurred
						generated antibodies were	via placental
						present in all umbilical cord	transfer and
		hV.				blood and breastmilk	breastmilk.
						samples.	

Mangat et al.,	BNT162b2	Case	Mayo clinic	Pregnant	Both doses of	At 33 weeks of gestation, a	There was
2021	Vaccination	study	health system	woman	Pfizer-BioNTech	preterm neonate was	transplacental
	during Pregnancy			vaccinated with	BNT162b2	delivered via emergency	transfer of
	Protects Both the			2 doses of	mRNA vaccine	cesarean section. To	neutralizing SARS-
	Mother and			COVID-19		evaluate for SARS-CoV-2-	CoV-2 antibodies
	Infant: Anti-			vaccine at 22		specific antibodies, a	after vaccination
	SARS-CoV-2 S			and 26 weeks of	R	serological	during pregnancy
	Antibodies			gestation		test was done on the	and the immune
	Persistently			(n = 1)		newborn at 6 weeks, 3	persisted at the
	Positive in an					months, and 6 months.	infant's 6 months
	Infant at 6 Months					Positive	of age.
	of Age		~0.			anti-SARS-CoV-2 S	
						antibodies were detected in	
						the infant at 6 weeks, 3	
		hV.				months, and 6 months of	
		Μ				age.	
<u> </u>		<u>//</u>					

Mithal et al.,	Cord blood	Case	Hospital in	Vaccinated	Pfizer-BioNTech	Maternal plasma and cord	Pregnant women
2021	antibodies	series	Chicago	pregnant women	BNT162b2: 64%	blood testing showed that	who received a
	following			(n = 27)	Moderna mRNA-	96.29% had a positive	COVID-19 mRNA
	maternal				1273: 18%	SARS-CoV-2 IgG test at the	vaccine during the
	coronavirus				Unknown: 14%	time of delivery. Of 28	third trimester had
	disease 2019					neonates, 25 had positive	transplacental
	vaccination during				R	IgG tests . The observed	transfer of IgG to
	pregnancy			.0		mean IgG transfer ratio	the infant.
						demonstrated that infant	
						antibody levels are about	
						equal to the maternal levels.	
			~0~				
		N [°]	1	1	1	1	<u>. </u>

Paul and	Newborn	Case	Hospital in	Vaccinated	Single dose of	COVID-19 naïve mother	SARS-CoV-2 IgG
Chad, 2021	antibodies to	study	Florida	pregnant woman	Moderna mRNA-	who had received a single	antibodies are
	SARS-CoV-2			(n = 1)	1273	dose of mRNA vaccine 3	detectable in a
	detected in cord					weeks prior to delivery	newborn's cord
	blood after					delivered an infant with	blood sample after
	maternal					SARS-CoV-2 IgG	only a single dose
	vaccination – a				R	antibodies detectable in cord	of the Moderna
	case report			.0		blood.	vaccine. Thus,
							there is potential
							for protection and
							infection risk
			0				reduction from
							SARS-CoV-2 with
							maternal
		5					vaccination.
			1	1	1	1	1

Prabhu et al.,	Antibody	Cross-	Academic	Vaccinated	Pfizer-	Cord blood testing of	Pregnant women
2021	Response to	sectional	medical	pregnant women	BioNTech	vaccinated pregnant women	who received a
	Coronavirus	study	center in	(n = 122)	BNT162b2:	showed antibody production.	COVID-19 mRNA
	Disease 2019		New York		69.67%	Maternal antibody	vaccine elicited
	(COVID-19)				Moderna	production started on the 5 th	immune response
	Messenger RNA				mRNA-1273:	day and transfer of	and there was
	Vaccination in				30.32%	immunity to the neonate at	transplacental
	Pregnant Women			.0		16^{th} day after the first	transfer of IgG to
	and				55 received one	vaccination dose. Maternal	the neonate.
	Transplacental				and 67 had	IgG levels increment was	
	Passage Into Cord				received both	statistically significant .The	
	Blood		0		doses of the	association of maternal IgG	
					COVID-19	levels with cord blood IgG	
					vaccine	levels was also statistically	
		hV.				significant.	
		M					

Trostle et al.,	High antibody	Cohort	Academic	Vaccinated	Pfizer-BioNTech	Cord blood testing after	COVID-19
2021	levels in cord	study	medical	pregnant	BNT162b2: 72%	delivery showed	vaccination during
	blood from		center in	women (n = 36)	Moderna	transplacental antibody	pregnancy confers
	pregnant women		New York		mRNA-1273:	transfer, with cord blood	higher levels of
	vaccinated				28%	specimens having	antibody transfer
	against COVID-				R	high levels of anti-S	in the neonates
	19					antibodies.	suggesting
				\sim			immune protection
							against SARS-
							CoV-2.
			~0				
		-					
		\sim					

Yang et al.,	Association of	Cohort	Medical	Vaccinated	Pfizer-BioNTech	The highest maternal and	A complete
2021	Gestational Age	study	center in New	pregnant	BNT162b2:	umbilical cord blood IgG	COVID-19
	at COVID-19		York	women (n =	75.42%	antibody	vaccination course
	Vaccination,			1,359)	Booster:1.80%	levels occurred with early	and a third
	History of SARS-				Moderna	3 rd -trimester	trimester booster
	CoV-2 Infection,				mRNA-1273:	vaccination. However,	dose were
	and a Vaccine			0	22.15%	neonates born to fully	associated with the
	Booster Dose				Janssen JNJ-	vaccinated women, early in	highest maternal
	With Maternal				78436735:	I st trimester had similar or	and umbilical cord
	and Umbilical				2.43%	higher cord IgG levels than	antibody levels.
	Cord Antibody				Booster: 0.70%	neonates born to women	
	Levels at					who got vaccinated in the	
	Delivery					3 rd trimester but were not	
						fully vaccinated	
		N				before delivery.	
			1	1	1		

Author(s),	Study Title	Study	Study	Participants	COVID-19	Outcomes	Conclusions
Year		Design	Setting	(n)	Vaccine Type,		
					% received		
Ahlers-	Concerns of	Cohort	Sedgwick	Pregnant (n =	Not stated	Vaccine acceptance: If a	More than half of
Schmidt et	women regarding	study	county	46) and	Q`	COVID-19 vaccine became	the participants
al.,	pregnancy and		prenatal	postpartum		available, 47.80 % (n = 54)	would not or were
2020	childbirth during		programs in	women (n = 68)		were interested in receiving	unsure of receiving
	the COVID-19		Kansas	enrolled in		it ; 23% were not and 29.20	the COVID-19
	pandemic			prenatal		% were unsure. Concerns	vaccination.
			0	programs		were side effects/ sickness	
						(55.90 %), cost (5.10 %),	
						and perception it is	
		5	7			unnecessary (3.40 %).	
			<u> </u>				1

COVID-19 Vaccine Acceptance

Battarbee et	Attitudes Toward	Cross-	Salt Lake	Pregnant	Not stated	Vaccine acceptance: 41%	More than half of
al., 2022	COVID-19 Illness	sectional	City, UT,	women		of pregnant women were	the pregnant
	and COVID-19	survey	Birmingham,	(n = 915)	X	willing to get a COVID-19	participants were
	Vaccination	study	AL, and New			vaccine. Major concern was	unwilling to get
	among Pregnant		York, NY			vaccine safety (82%).	vaccinated.
	Women: A Cross-					Receipt of influenza vaccine	Minorities and
	Sectional				2	in the past year was	those without prior
	Multicenter Study			.0		associated with higher odds	influenza
	during August-					of vaccine acceptance (aOR	vaccination were
	December 2020					2.10, 95% CI 1.50-3.00).	less likely to accept
						Black and Hispanic women	the COVID-19
			~0.			had lower odds of accepting	vaccine.
						a vaccine compared with	
						White women (aOR 0.40,	
		hy.				95% CI 0.20-0.60 for both).	
			1	1		1	1]

Desai et al.,	COVID-19	Cross-	Perinatal	Pregnant	Not stated	Vaccine uptake: Pregnant	Pregnant women
2021	vaccine	sectional	center at the	women		women who had received	who discussed the
	acceptance in	survey	Pomona	(n = 124)	X	the annual influenza vaccine	COVID-19 vaccine
	pregnancy	study	Valley			were significantly more	with a healthcare
			Hospital in			likely to get the COVID-19	provider were
			California			vaccine (50% vs. 9.70%, p	statistically more
					R	<0.05). Additionally, those	willing to receive
				.0		who had previously	the vaccine.
						discussed the COVID-19	
						vaccine with a physician	
						were significantly more	
			2			likely to receive the vaccine	
						(45.80% vs. 26%, p = 0.04).	
L				I	I		
		\mathbf{O}					

Hirshberg et	Offering onsite	Pre-post	Obstetric	High-risk	Pfizer-	Vaccine uptake: Of 32	Vaccine hesitancy,
al., 2021	COVID-19	study	clinic at a	obstetric patients	BioNTech	eligible patients counseled	not availability, is
	vaccination to		single	(n = 93)	BNT162b2	prior to onsite vaccine	a critical driver of
	high-risk obstetric		academic		vaccine	availability, 1 (3%) received	low vaccination
	patients: Initial		medical			vaccination offsite. Of 55	rates in high-risk
	Findings		center in			eligible patients counseled	obstetric patients.
			Missouri		S	after onsite vaccine	
				.0		availability, 2 (3%) received	
			and Illinois			onsite vaccination, and 4	
						(7%) proceeded with	
						vaccination offsite. Onsite	
			2			vaccination availability did	
						not significantly increase	
						vaccination rates (3% v 11%	
		5				p = 0.22).	
				1	<u> </u>	1	<u> </u>

Huddleston et	COVID-19	Cross-	Online	Pregnant	Not stated	Vaccine acceptance:	There was
al., 2021	Vaccination	sectional	survey of US	women at <10		Among the unvaccinated,	substantial vaccine
	Patterns and	survey	pregnant	weeks' gestation	X	only 35.70% reported	hesitancy among
	Attitudes Among	study	women	(n = 2,506)		vaccine acceptance.	unvaccinated
	American					Predictors of lower odds of	respondents.
	Pregnant					vaccination were Black race	
	Individuals				R	and being counseled not to	
				.0		vaccinate by a provider.	
			~0~				
		by.					

Levy at el.,	Acceptance of	Cross-	Single	Pregnant	Not stated	Vaccine acceptance:	The COVID-19	
2021	COVID-19	sectional	ultrasound	women		58.30% of pregnant women	vaccine acceptance	
	vaccination in	survey	unit in New	(n = 653)	X	reported vaccine acceptance.	rate of 58.4% was	
	pregnancy: a	study	York			Among those who declined	consistent with the	
	survey study					vaccination, common	acceptance of other	
						concerns were risk to the	recommended	
					2	fetus or neonate (45.80%),	vaccines in	
				.0		and vaccine side effects	pregnancy (DTaP,	
						(17.70%). African American	influenza) and is	
						race, Hispanic ethnicity, low	associated with	
						education, and declining the	patient	
			0			influenza vaccine were	characteristics and	
						associated with	previous vaccine	
						nonacceptance of COVID-	history.	
		0				19 vaccination in pregnancy.		
L	3							

Razzaghi et	COVID-19	Cohort	8 health	Total population	Pfizer-BioNTech	Vaccine uptake: 16.3% of	COVID-19
al., 2021	Vaccination	study	systems (5	in the registry	BNT162b2: 8.7%	pregnant women identified	vaccination
	Coverage Among		Kaiser	(N = 135,968)	Moderna mRNA-	in CDC's Vaccine Safety	coverage is low
	Pregnant Women		Permanente	Pregnant	1273: 7.0%	Datalink had received ≥1	among pregnant
	During Pregnancy		health	women who	Janssen JNJ-	dose of a COVID-19 vaccine	women.
	-Eight Integrated		systems;	received ≥1	78436735: 0.6%	during pregnancy.	
	Health Care		Denver	dose of COVID-	R	Vaccination was lowest	
	Organizations,		Health;	19 vaccination		among Hispanic (11.90%),	
	United States,		HealthPartner	during		Black (6%) and women aged	
	December 14,		s; and	pregnancy		18–24 years (5.50%).	
	2020–May 8,		Marshfield			Concerns were limited	
	2021		Clinic in	(n = 22,197)		safety data in pregnancy and	
			Washington,			possibility of harm to the	
			California,			fetus.	
			Colorado,				
	3		Wisconsin				
L		1					

Sutton et al.,	COVID-19	Cross-	Healthcare	Pregnant (n =	Not stated	Vaccine acceptance:	Pregnant
2021	vaccine	sectional	institution in	216), non-	X	Pregnant women had the	respondents were
	acceptance among	online	New York	pregnant (n =		lowest rate of vaccine	more likely to
	pregnant,	survey		656), and	Q,	acceptance (44.30%; p <	decline vaccination
	breastfeeding, and	study		breastfeeding		0.05) compared to other	than non-pregnant
	non-pregnant			women (n =	K	groups. Non-pregnant	and breastfeeding
	reproductive-aged			122) (including		women were most likely to	women.
	women			patients,		accept vaccination ($n = 457$,	
				providers, and		76.20%; $p < 0.05$) with	
				staff) at a		breastfeeding women the	
			~0	healthcare		second most likely	
				institution		(55.20%). Working in	
						healthcare was not	
						associated with vaccine	
						acceptance.	

Sznajder et	Covid-19 vaccine	Cross-	Academic	Pregnant	Not stated	Vaccine acceptance: 65%	Factors associated
al., 2022	acceptance and	sectional	medical	women	<u>s</u>	of pregnant respondents	with COVID-19
	associated factors	online	center in	(n = 196)		were willing to receive the	vaccine acceptance
	among pregnant	survey	Pennsylvania			COVID-19 vaccine. Being	included having
	women in	study				employed full-time (aOR	had an influenza
	Pennsylvania				\mathcal{O}^*	2.22; 95% CI 1.02, 4.81),	vaccine in the
	2020			0		being overloaded (stressed)	previous year,
						(aOR 2.18; 95% CI 1.02,	being employed
						4.68), and having had an	full time,
						influenza vaccine in the past	and a general
			2			year (aOR 4.82; 95% CI	feeling of being
						2.17) were significantly	overloaded.
						associated with COVID-19	
		Y				vaccine acceptance.	
			1	t	1	i	L]

[I	I	1				1			
Townsel et	COVID-19	Cross-	Academic	Pregnant (n =	Not stated	Vaccine acceptance:	Pregnant women			
al., 2021	vaccine hesitancy	sectional	medical	245), Trying to		Pregnant participants were	had significantly			
	among	online	center in	conceive (TTC)	X	six times more likely to	higher rates of			
	reproductive-aged	survey	Michigan	(n = 891), and		delay COVID-19	declining or			
	female tier 1A	study		breastfeeding		vaccination and twice as	delaying COVID-			
	healthcare			women (n =		likely to decline (p $<$ 0.05),	19 vaccination			
	workers in a			177) employee	R	compared to other women of	compared to other			
	United States			at a medical		reproductive age. The	women of			
	Medical Center			center		highest rates of concern	reproductive age.			
						were observed for safety and				
						effectiveness of the vaccine.				
			Q.							
		-								

Wang et al.,	Perceptions and	Cross-	Tertiary care	Vaccinated	At least one dose	Vaccine acceptance:	Pregnancy status,		
2022	knowledge of	sectional	institution in	pregnant HCWs	of Pfizer-	Vaccine receipt was 16.90%.	especially the		
	COVID-19	online	Pennsylvania	(n = 65),	BioNTech	Pregnancy status	uncertainty of		
	vaccine	survey		Non-Vaccinated	BNT162b2 or	influenced 44.4% (8 out of	COVID-19		
	safety and	study		pregnant	Moderna mRNA-	18) of non-vaccinated	vaccination safety		
	efficacy among			HCWs (n = 18)	1273:	HCWs to not receive the	in pregnancy,		
	vaccinated and			Pregnant	78.30%	COVID-19 vaccine,	was a major reason		
	nonvaccinated			.0		but conversely influenced	for vaccine refusal		
	obstetric					1.50% (1 out of 65) of	among non-		
	healthcare			K Č		vaccinated HCWs to receive	vaccinated		
	workers					the vaccine.	HCWs .		

Figure legend

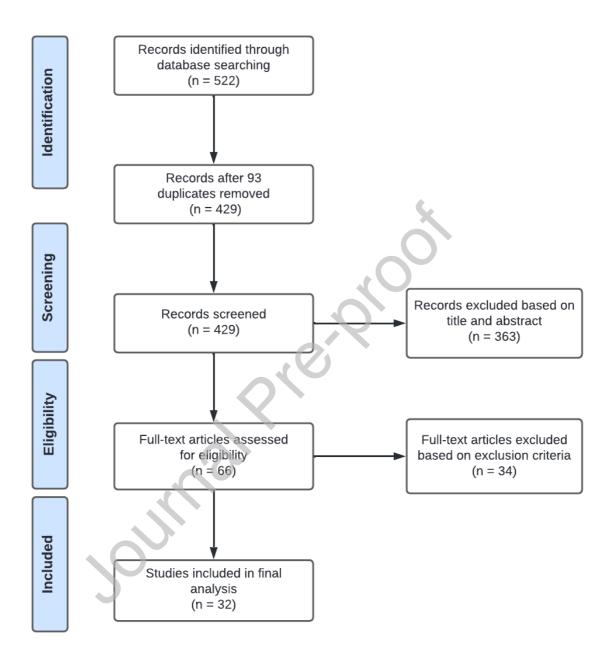


Figure 1. PRISMA flow diagram of the included studies. Caption: The PRISMA flow diagram for the systematic review detailing the database searches, the number of abstracts screened, full texts retrieved, and the final studies included in the analysis.

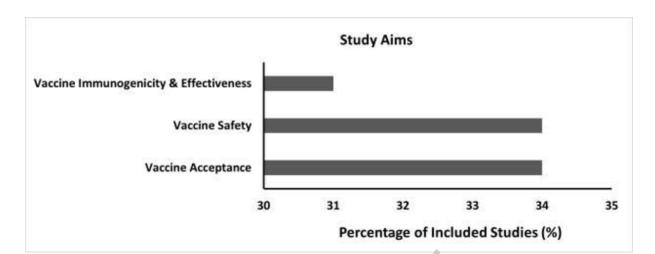


Figure 2. Study Aims and Percentage of Included Studies

Journal Prevent